On the Cahn{hilliard Equation with Degenerate Mobility
نویسندگان
چکیده
An existence result for the Cahn{Hilliard equation with a concentration dependent diiusional mobility is presented. In particular the mobility is allowed to vanish when the scaled concentration takes the values 1 and it is shown that the solution is bounded by 1 in magnitude. Finally applications of our method to other degenerate fourth order parabolic equations are discussed.
منابع مشابه
On the Cahn{hilliard Equation with Non{constant Mobility and Its Asymptotic Limit
We present an existence result for the Cahn{Hilliard equation with a concentration dependent mobility which allows the mobility to degenerate. Formal asymptotic results relate the Cahn{Hilliard equation with a degenerate mobility to motion by surface diiusion V = ? S. We state a local existence result for this geometric motion and show that circles are asymptotically stable.
متن کاملInterface Solutions of a Degenerate Cahn - Hilliard Equation
We present an analysis of the equilibrium diiusive interfaces in a model for the interaction of layers of pure polymers. The discussion focuses on the important qualitative features of the solutions of the nonlinear singular Cahn-Hilliard equation with degenerate mobility for the Flory-Huggins-de Gennes free energy model. The spatial structure of possible equilibrium phase separated solutions a...
متن کاملFinite element approximation of the Cahn-Hilliard equation with concentration dependent mobility
We consider the Cahn-Hilliard equation with a logarithmic free energy and non-degenerate concentration dependent mobility. In particular we prove that there exists a unique solution for sufficiently smooth initial data. Further, we prove an error bound for a fully practical piecewise linear finite element approximation in one and two space dimensions. Finally some numerical experiments are pres...
متن کاملSharp-Interface Limits of the Cahn-Hilliard Equation with Degenerate Mobility
We consider the sharp interface limit of the degenerate Cahn–Hilliard equation with polynomial free energy via matched asymptotic analysis involving exponentially growing terms and multiple inner layers. With a quadratic mobility, a contribution from nonlinear, porous-medium type bulk diffusion to the normal flux condition for the interface motion appears in the limit model to the same order as...
متن کاملFinite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility
We consider a fully practical nite element approximation of the Cahn-Hilliard equation with degenerate mobility @u @t = r:(b(u) r(?u+ 0 (u))); where b() 0 is a diiusional mobility and () is a homogeneous free energy. In addition to showing well-posedness and stability bounds for our approximation, we prove convergence in one space dimension. Furthermore an iterative scheme for solving the resul...
متن کامل